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The Transverse Resistive-Wall Instability |
of Extremely Relativistic Beams of Electrons and Positrons.
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Istituto Nazionale di Fisica Nucleare - Sezione di Roma

(ricevuto 1’11 Novembre 1965)

Summary. — The transverse resistive-wall instability is diseussed With
special regard to the difficulties which it may cause in the performance
of colliding beam experiments. Results previously obtained by Laslett,
Neil and Sessler () as well as by Courant and Sessler (*) and by Pelle-
grini and - Sessler (8) are confirmed. The treatment is based on a sim-
plified geometry in which the motion of the beams is rectilinear. Appli-
cation to a circular geometry is made possible by the introduction of
conditions of periodicity. The results obtained apply to continuous
as well as to bunched beams. The resisting-wall force between two colliding
beams is also discussed.

1. — Introduction.

In the following we give a brief account of the physical principles under-
lying the transverse instability of high-energy beams, the discovery of which
at Stanford and MURA (-4), has raised many doubts about the feasibility of

(t) C. P. Cumrzis, et al.: Beam experiments with the MURA 50 MeV FFAG accelerator,
in Proceedings of the Internamonal Conference on High-Energy Accelerators (Dubna, 1963),
p. 620.

- (®) F. E. Mizs and G. K. O'NE1L: Vertical instabilities in eleciron storage rings,
in Proceedings of the Brookhaven Summer Study on Storage Rings, Accelerators and Ewpem-
mentation at Super-High Emwergies (BNL-7534, 1963), p. 368, 375. '

() M. Q. BarToN, J. CorringHaM and A. TRaNIs: Rev. Sci. Instr., 35, 624 (1964).
(%) L. J. LasLerr, V. K. NEIL and A. M SESSLER: Rev. Sci. Instr., 36, 436-(1965);
quoted as L.N.S. : e
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254 E. FERLENGHI, C. PELLEGRINI and B. TOUSCHEK

an experimentation with colliding beams. After the meeting in Novosibirsk
in March 1965 at which most participants were impressed by the urgency of
coming rapidly to a full understanding of the phenomenon, intensive work
was started and much correspondence exchanged particularly between the in-
terested parties in California, Italy and at the Brookhaven National Labora-
tories. A summer study group organized at Stanford did much to clarify the
situation, so that today it can be said that the transverse instability observed
in Stanford is indeed due to the finite resistivity of the walls of the acceleration
chamber and that it can be cured either by the application of a feedback or
by the introduction of nonlinearities, which inhibit the build up of large ampli-
tudes of betatron oscillations.

It is not the intention of the present note to give a review of all the work
(starting from a ‘remarkable contribution by MAXWELL (°)) which has been
done on this subject. We shall rather give a description of what can now be
considered the relevant part of a line of investigation, which was started by the
Adone group in 1964 (°). Most of the foundations of this work were laid in-
dependently of the work of other groups, so that in spite of the recent intense
exchange of information, the preéent paper can be considered as corroborative
evidence for at least part of the results which have been obtained elsewhere.

The phenomenon observed at Stanford was the build-up of vertical coherent
betatron oscillations in the 500 MeV colliding beam arrangement. The rise
‘time of this build-up is of the order of milliseconds. It was also found that
what cured the instability of a single beam did not necessarily cure the insta-
bility of one beam in the presence of another. From its very discovery the
phenomenon has been described by the Stanford group as a resistive-wall
instability. |

That the finite resistivity of the walls of the vacuum chamber can give rise
to a build-up of betatron oscillations can be seen by the following intuitive
argument: since one observes a build-up of betatron oscillations one has to
look for the source of its energy, which is found in the radio-frequency system
which keeps the longitudinal motion going. In order that longitudinal energy
can be converted into transverse motion it is necessary that the particles « can
sense » that they are moving longitudinally. If the walls of the vacuum vessel
were ideal conductors at a constant distance all along the trajectory this would
not be the case, for this arrangement would look exactly the same, whether
the electron is at rest or not. If however the conductivity of the wall is

(3) J. C. MaxwrrL: 4 Treatise on Hlectricity and Magnetism, vol. 2 (Oxford, 1873),
p. 271.

(¢) BE. Ferievcur and C. PELLEGRINI: Tramsverse resistive wall instabilities of
relativistic beams inm circular accelerator and et-e~ storage rings, unpublished report,
{March 1965).
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THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 255

finite the electron will « feel the wind » of the wall moving past: there can be
an exchange of longitudinal and transverse energy.

In the following we shall concentrate exclusively on this « frictional » phe-
nomenon and pay scarce attention to the conservative forces between the
particles. A

Ideally the prOcedure to be followed would be to determine the fields sub-
ject to the boundary conditions on the walls of the vacuum chamber due to
the given longitudinal and arbitrary vertical motion of a single particle and
then in the presence of N,-}- N, particles integrate the mechanical equations
of motion. This task is greatly facilitated if in the absence of fields the ver-
tical motion of the electrons can be considered harmonic and small. The re-
sulting mechanical equations will then be linear and—at least in the case of
a single beam—with constant coefficients, so that the integration of the me-
chanical equations leads to the determination of the eigenvalues of the secular
determinant. The eigenvalues then represent the frequencies of the transverse
motion and their imaginary parts can—according to their sign—be interpreted
either as a damping constant or as the rise time for the build-up of vertical
betatron oscillations.

The actual treatment is based on a number of simplifications, which we list:

1) The longitudinal motion of electrons and positrons is rectilinear and
fixed in the sense that the distances between the particles in each beam are
constant.

2) Since in all storage rings electrons move in closed orbits a periodicity
condition is imposed on the rectilinear motion.

3) The vertical motion of the electrons in the absence of fields is har-
monic, so that the electron can be envisaged as an oscillator. All these oscil-
lators have the some frequency v,.

4) The wall of the vacuum chamber is represented by an infinite plane
at y =0. The longitudinal motion is parallel to this plane.

5) The resistive-wall effect is calculated to the first power of ¢~ where
o is the conductivity of the wall.

6) The distance a between the wall and the electron orbits is considered
to be small compared to the reduced wavelength of the vertleal betatron
oscillations.

7) Coherent radiation damping is neglected and only the imaginary parts
of the oscillation frequencies are calculated.

Though this list of simplifications may appear rather restrictive it will be
seen that it separates the description of the malady from its cure. Particularly
the conditions 1), 3) and 7) may give an overpessimistic picture of the effect.
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256 E. FERLENGHI, C. PELLEGRINI and B. TOUSCHEK

Since even this pessimistic picture admits a simple cure, we think that the
simplifications 1) to 7) are quite justified.
- The method Whlch we have here outlined leads to the follomng results:

1) For a continuous beam the rise time is exactly equal to the rise time
calculated by LASLETT, NEIL and SESSLER (%) for what in their paper is termed
« ¢ircular geometry ».

2) The rise time for an extremely rbune'hed‘ beam is obtained. Stable and
unstable modes are selected by a rule given earlier by COURANT (7).

3) The rise time for an arbitrary number of bunches 18 given. 'Also here
we have complete agreement with the stability rules recently derived by Cou-
RANT and SESSLER (®).

4) The resistive-wall rise time for the interaction between an arbitrary
number of infinitely short bunches of electrons and positrons is calculated.
In agreement with recent work by PELLEGRINI and SESSLER (°) it is found that
the instability can concern only the electrical centre of the two beams. The
mechanical centre results to be always damped.

2. — Kinematical deseription of the eleetrons.

The motion of the electrons is entirely in the y-z-plane. The longitudinal
motion of the electron is described by

2.1) 2lt) = £ + ot

and one has k=1, 2,..., N,. The motion of positrons is described by (2.1)
with v replaced by — o and k=1, 2, ..., N,. In view of the generalization to
closed orbits we limit &, by

(2.2) 0<é&<<u,

where u is the circumference of the machine. The vertical motion of the elec-
trons is described by ‘

(2.3) | Y = a + 2 Re(me™") ,

("y E. D. CouraNT: Proceedings of the Particle Accelerator Conference, Wash-
ington, 1965; IHEE Trams., NS 12, 550 (1965).

(¢) E. D. CouranT and A. M. SessLER: Stanford Storage Ring Suwmmer Study (1965).

(® C.PrriEcrINI and A. M. SEssLER: Stanford Storage Ring Summer Study (1965).

5132



THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 257

where 7, is a complex amplitude and it is assumed that |r.] < a. » is the
vertical betatron frequency—at least as long as electrical forces are neglected.
We will often use » ~ qw,, where w, is the frequency of revolution of the
electrons in the machine and ¢ is a pure number.

The longitudinal distribution of the particles in the beam can be described
in terms of the Fourier coefficients

(2.4) Ng, = > exp [ir&/R],

where N ig the total number of particles in the beam and R is the mean radius
defined by R = u/27.
A continuous beam—the case treated by L.N.S.— has

(2.5) g, = 0,0 5

where ¢ is the Kronecker symbol.
The vertical motion can be described in terms of a normal-mode analysis.
The 7-th normal mode is defined as

(2.6) ‘Y,v = > n, exp [— r&/R] .

If only the »-th mode is excited and if its frequency is », we will have
m, = Y exp [ +ir&,/R—ivrt]. The r-th mode therefore corresponds to a wave
of wavelength 7= R/|r| (for r£0), which propagates along the electron beam
for r> 0 and against it for » << 0.

At this point it is necessary to observe that the «sharp » normal modes
(2.6) are a consequence of the simplification 1) listed in the Introduction. The
basic assumption for the persistence of normal modes of the form (2.6) is
&, = const. This condition is never satisfied in reality, since the fluctuations
of the radiation loss (if there is no radio frequency) or the synchrotron oscil-
lations (if there is one) will lead to a mixing of the position variables. This
mixing will destroy the individuality of the higher modes and render the mode
analysis useless for processes with a rise time which is smaller than the time
required for the mixing of the modes. We note that the blurring of the normal
modes is given by

2.7 As = s AéR

where in the presence of a radiofrequency A¢ will be of the order b—the aver-
age amplitude of the synchrotron oscillations. The mixing time 7, can be
defined as the time necessary for the step As=1 and is therefore given by
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258 E. FERLENGHI, C. PELLEGRINI and B. TOUSCHEK

T, = R|Qbs, where  is the frequency of the synchrotron oscillations. The
condition ¢, « T, will restrict the application of the naive model described in
the Introduction to long-wave phenomena.

In the case of several very short bunches (short compared to the circum-
ference of the machine) it will be found useful to deal with the bunch as if

it were a single particle. In this case eq. ('2.4‘) can be replaced by the de- -
finition

(2.8) | BG, = Y exp [irén/R] = > exp [2mirn/B] .

Here B is the total number of bunches in the beam, and it is assumed that the
bunches are placed at

(2.9) &, = nul/B with n=20,1, ..., B—1.
The sums in (2.8) can be directly evaluated and give

(2.10) G, =90,_,, with n =10, 41, +2,....

In correspondence to eq. (2.6) we can introduce « macroscopic » normal modes
by means of

(2.11) H, = n,exp[— ir&[R] = > exp [— 2nirk/B]ln:

k k

and it is clear that the functions H, will be periodic, that is H,, ,= H,. The
macroscopic modes H, do not mix, since a particle which escapes from one

bunch cannot enter into another.

3. — The fields.

The determination of the fields will be carried out in two steps. We shall
first calculate the eiectromagnetic field produced by a single electron and as-
suming that the conductivity of the wall is infinite. In the second step we
shall determine the correction to this field produced by the finite conductivity
of the wall. The approximation assumes that all the frequencies of interest
are small compared to the inductivity (which is measured in units of s?).

The calculation of the field is simplified by carrying it out in the frame of
reference in which the electron is at rest. In this frame the electron is repre-
sented as an oscillator of frequency v = vy wherey — (1—o?)* and we have
put ¢=1. v is the velocity of the electrons. We assume that the oscillator
is in the fixed position (2, ¥', 2') = (0, a, 0).
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THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 259
The y-component of the electrical current density of the electron is given by

(3.1) J, = —iev 8(a') 6y — a) 6(2') exp [— iv't']n + c. c.
¢. ¢. denotes the complex conjugate and J; is the current associated with the
vertical motion defined by (2.3). ‘

For the following it is convenient to introduce the Fourier transforms
fl@',y'; ¥, w') of a quantity F(z',y',1',2) by means of

(3.2) 2 =fdk’ fdw'f'(m', Yk, o) exp[ik'y —w't')].

Applying this to the current defined by (3.1) one obtains

(3.3) j, = — ey’ O’ —") 8(#") 8(y' —a) + ...,
where the -+ ... indicates the part arising from c. ¢. in (3.1). The four-current
is determined by supplementing a time component ¢ in such a way that the
equation of continuity divJ - p =0 is satisfied. In this way one obtains

0

(3.4) j' = —ieny' 8w’ —»') (0, 1,0, —T) 8(z) S 8y’ +a) ,
w Y £ :

where the terms in the bracket represent the j., j., j., ¢’ and the sum
' -+

takes account of the mirror charge placed at y'=-—a. The solutions of th_e
four-dimensional Poisson equation

A2
(3.5) (4’ — —4zJ’  with D:A—%,

where J' is the 4-current transform of j’, now represent the 4-potential of
the electromagnetic field in the region y > 0. This field satisfies the boundary
condition F_= E, = 0 for an ideal conductor (the tangential components of the
electric field vanish on the surface y = 0).

Carrying out the Fourier transformation (3.2) we can write

gl =)
(3.6) a,=a," +a,,

()
Y

where the a'*’ satisfy the differential equations

| 18 ., 0 - . , |
(3.7) ( ot 4+ 22) al®) = daieny' 8l —v')8(@') Y 8y +a) .

Q—i'agi 004 +
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260 E. FERLENGHTI, C. PELLEGRINI and B. TOUSCHEK

22 is the invariant wave number:
(3.8) =k,

a quantity which is zero for waves which propagate with the velocity of light
either parallel or antiparallel to the direction of motion of the electrons, and
0. is defined by

(3.9) = + V(Y +a) + o

Equation (3.7) has to be solved observing the « Ausstrahlungsbedingung »
which requires that a should behave as exp [i|4]o] for timelike A (w'2>k'2)
and as exp[— |4|¢] f01 spacelike A. Since (3.7) is the equation for the cylinder
functions it follows that for timelike A the solution must be proportional to
the Hankel function K{’(lp). The factor of proportionality is determined in
the following way. J(z') d(y’' 4+ a) on the right-hand side of (3.5) can be re-
placed by 6(p.)/2mo,. For p— 0 the Hankel function H{" behaves as (2i/7)log L.
Substituting for the d-function in (3.7) multiplying by ¢, and integrating over
it from 0 to &, we then find that we must have

(3.10) - a, = meny’ 6(w’ — ') 3 (Ag.) -
A time component ¢ has to be added to the vector potential so that the Lorentz
condition can be satisfied. In this way one gets for the four-potential

(3.11) a’:nem)’ﬁ(a)’—v’)(o 1,0, aay ) S HP(Ao.) -

We note that > H"” is an even function of y': the fourth component of a’
vanishes on the surface %' = 0.
The six Fourier components of the field strength will be denoted by

!

e ... h; For infinite conductivity the tangential components of the electrical

T
7

field ¢, and e, must vanish on the surface. This is indeed the case for we have

(312) 6; = — agv’/am’z 0, 6; = — ik/(p’: 0 for Y = 0.

As has been explained in the Introduction the motion of areal conductor
is observable to the electron and it is therefore convenient to treat the problem
in the system in which the conductor is at rest. Remembering that z, ¥, o
and 2 are invariant under a Lorentz transformation along the z-axis, we have
Dbecause of w'= y(w— kv)

_ ) _ v 0 0
.1 . —_ . (. _—— —_— () .
(3.13) e =mopdlo— o ”)(0’ by fway) 2 Hy
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THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 261

To formulate the boundary-value problem for a real conductor we need the
tangential components of the magnetic field at the surface y = 0. These are

82

v ,
h:c = 27‘[677’))6((,0 — vk — ’V) (7;}' 6’!72 — @,ZC) H(()l)(lgo) ,
(3.14)

h, = 2%677115(60—7)](3—.1)) a—icHéI)MQO) ,

where we have put g, = \/a2+ X2,
The boundary condition in the case of a finite conductivity can be expressed
in the form

(3.15) e, = (nxh)(1—1)Z,
where n is a unit vector pointing from the conductor into the vacuum, e, is
the tangential component of the electric vector and Z is defined as

(3.16) 7 =V .

The square root is taken to be positive for w > 0. TIts analytical continua-
tion as well that of the Hankel function will be discussed in the next Section.
In the present case we can write for (3.15)

(3.17) : e =zh_, e,=—=zh_,

@x z &x

‘where we have used the abbreviation
{(3.18) ' 2= (1—14)Z.

Since for all frequencies in play Z is numerically very small, the boundary-
value problem posed by (3.17) can be solved by expanding the solution in
terms of Z. The zeroth approximation then corresponds to infinite conduc-
tivity and of course gives e’ =e’=0. In first approximation the right-hand
side of (3.17) is replaced by h° i.e. the expressions (3.14). The boundary-value
problem (3.17) has to be solved in the half space y > 0. ‘
To obtain the first approximation we introduce the vector potential
a,, 0),

y?

(3.19) a'’V = 2qeny 6(w — vk — v)(z/iw) (o, &

where the Lorentz condition imposges

. 2
(3.20) an; 4+ Oa“ 1 ke, = 0
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262 E. FERLENGHI, ¢. PELLEGRINI and B. TOBSCHEK

The boundary conditions (3.17) take the form

0
amZ%Hé”(lQo) ;
3.21 =
(3.21) i o o2 N o for y = 0.
oy = — ’E/éﬁ_l Hg"(A0o) ,
Putting
0
Ly — a—mH y
0
(3.22) ay, = —H + By,
oy
2’2
&y = ﬁ{}H + ﬂz ’

where as an abbreviation we have put H = H\"(l0,), it is seen that the first
terms on the right-hand side of this equa,tibn are regular in the semi-space
y > 0, satisfy the « Ausstrahlungsbedingung » and the wave equation, as well
a8 the Lorentz condition and the first of the boundary conditions (3.21). That
they satisfy the wave equation follows from

(az —}—i —|—12>H=O.

ow? = oy?

The Lorentz condition imposes for f

By | ..
2 + ikp,=0.

(3.23)

Combining this with the second boundary condition (3.21), we get a boundary
condition for f:

(3.24) 88[‘?; = (1—? aay; + w2) HP(Ao,) for y =0.

The solution of the boundary-value problem is then given by

vk oH w?
2 _
(3.25) . By = o 7 )

where M is defined as the integral

©

(3.26) = 2| EP (W T+ ).
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THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 263

It is easily seen that f defined by eq. (3.25) satisfies the wave equation and
is free of singularities in the semi-space ¥ > 0. This is obvious for the first
term in (3.25). The second term is recognized as a solution, the sources of
which are uniformly distributed along the line —a >y > oco. The « Aus-
strahlungsbedingung » makes sure that the integral (3 26) converges also in
the case of spacelike A.

Collecting the expressions (3.22) and (3.25) and inserting into (3.19) we get
for the vector potential a’ caused by the finite resistivity of the wall

(3.27) a'’t = 2qenvd(w — vk —v) (2fiw)

oH wdH o? (v 02
(55%"@7‘7]””(5'@7/2“)3’0)‘

In the following Sections we shall deal exclusively with the effects which
this field has on the motion of its sources.

4. — Forees on electrons and positrons.

The resistive field given by (3.27) is caused by what we shall assume to be
an electron moving along the z-axis as z(¢). We have to determine the force
exerted on another electron which moves as, say, 2z,(f) =&+t or on a po-
sitron moving as 2(?) = &, —vt. The force will be given by

(4.1) | F = £ e(Hl,+ vH).

We are only interested in the transverse force, though there will be of course
a longitudinal force F,. The fields F and H have to be evaluated at the
position of the «passive » particle, i.e. at =0, y =a. Equation (3.27) allows
us to determine e, and k,. Forming f, = 4 e(e, 4+ vh ) and using the differen-
tial equation for the function H one obtaing in this way

(4.2) [, = 2mnmuy (w — kv — v) P(w)
with v
: 2 z(w) [ [w? v2 \ 0H  wA? w*w+vk)
(4.3) Plo) :imva—c;— [(v (150 )J_wa) cy j:ﬁgavH_—l——M:l i

In this expression the argument of the Hankel functions is 24a. m is the mass
of the electrons and has been introduced to simplify the mechanical equations.

The analytical properties of P(w) are defined in terms of the « Aus-
strahlungsbedingung » and of causality. We observe that P has three branching
points. The first is at w =0 and is due to the factor z(w)/w. Since z(w)f(w)
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264 £. FERLENGHI, C. PELLEGRINI and B. TOUSCHEK

represents the deformation which a signal f(w) undergoes owing to the reflection
from the not perfectly conductive wall, and since the assumed time-dependence
is exp [—iwt] it follows that the cut has to be chosen in such a way that it
does not hinder the deformation of the path of integration into the positive
imaginary w—plaﬁae. This is achieved by choosing the cut to extend from
w=0 to w=—100.

The other two branching points of P(w) are due to the singular behaviour
of the Hankel functions at 2ia = 0. Using A2 = w?*— (0 —v)?/v? (the value of
% is imposed by the d-function in (4.2)) we find for the position of these points

(4.4) Wy 5= (1 4 0)T.

For very large energy one has w,=7/2 and w,= oo. Transforming back to
the frame of reference in which the electi'on is at rest it is realized that cw,
corresponds to an electromagnetic wave which travels backwards and
parallel to the direction of motion of the source particle, w, corresponds
to the forward wave. For most of the colliding-beam experiments now in
construction the wavelength of the forward wave is of the order of 10 pm.
In the interval m;<<A<<w, A is real and positive (definition of the Hankel
funetions). The cuts have to be arranged in such a way that outside this inter-
val and for w real, A is positive imaginary. This is achieved by choosing the
cut which starts at o = o, to extend into the negative imaginary w-plane to,
say, w,— too. The cut which starts at w, extends to the «north » to w,+ too.

We are now in a position to derive the equations of motion for the system
of particles. We assume that the k-th particle is described by an oscillator,
which in the absence of the resistive wall field, satisfies the equation of motion

@5 =0 or (=9t el = 0.

For greater generality we consider a source particle ('ihdex 1) which moves as
2,(t) = &+ vt. We shall first treat the case of electron-electron interaction.
Using eqgs. (4.2) and (4.3) and chosing P to correspond to the upper sign in
(4.3) (electron-electron interaction) we obtain the following system of mechan-
ical equations:

im

(4.6) (—'V2 -+ V%)W}: = Zfde(w> €xp [__’U_ (& — Ek):l exp [%) (51_570)] 7’]z s

for which one can also write

. v

.. ) i Sk 1
(4.7) m+v3m229(5 E)”f(t‘“5<‘5"—§’“))’
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THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 265

where we have put
(4.8) o(7) :=fde(w) exp [—iwt] .

The general properties of ¢ follow from the analytical behaviour of Plw). It
is immediately seen that if one could ignore the cut which starts at w, P(w)
could be considered analytical in the upper half of the w-plane. In this case
we would have o(7) =0 for 7<<0. There would therefore only be interaction
provided that the source particle &; precedes the passive particle &,: &> g,.
The retardation is seen from (4.7) to be Af/v. This corresponds to a situation,
which can be envisaged in the following- manner. The preceding particle de-
posits a signal on the wall. The signal is stored in the wall (without running
away) and is picked up by the k-th particle as it passes. The interaction is
mechanically retarded i.e. by A&/v, where v is the velocity of the particles.
‘The cut which starts at w, gives rise to a mechanically advanced inter-
action. This is of course in no contradiction with the principle of causality,
since a mechanically advanced interaction can be electrically retarded (v <oe).
The equations of motion (4.6) are valid for a linear machine. To cover the
case of closed orbits, we replace &, —&; by &—& -+ nu in eq. (4.6) and sum
over all the values of . :
To be more specific we shall limit the summation over n to — A < n< A.
The summation over 7 then supplies the integrand of (4.6) with a factor

4.9)  fr=2explilv—ow)nufv]=

exp [{A +1)(v—o)ufv] —exp[— it (»—w u/v]

exp [{(v — w) u/@]—l , %w\‘
G, %é;-g {;-"'ﬁa‘ \
FW :«F;N‘
J is a Dirichlet factor, which in the limit .4 = oo has the property: o ‘??ﬂsh%ﬁ

Wi

(4.10) All_t)rgo Fpr= z 0w — v —ra,) ,

8

where s =0, +1,... and w,= 2xv/u. Using the limiting value for 7 given by
(4.10) equation (4.6) can be replaced by

(4.11) (—2* +95)n, = 2 0o Py + swo) exp [— i(&;,— &j)s/R]n,

28

where E=wu/2n. It is seen that (4.11) is obtained from (4.6) by replacing
f dw by the sum w, Z This takes account of the periodicity of the machine

18 ~ Il Nuovo Cimenio B.
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structure and it is remarkable that the frequencies w, 6 = v4wes = we(q--5),
which appear in the argument of P are exactly those that can be revealed by
a pick-up electrode placed at the circumference of the machine.

If one applies the microgeopic normal mode analysis of Sect. 2 to eq. (4.11)
one obtains the result

s—r s °

(4.12) (— "+ )Y, = N, P» + sw)g,_ Y

It is therefore seen that the normal modes introduced in Sect. 2 will in general
not diagonalize the perturbation due to the finite resistivity of the wall. The
mixing agent is represented by the Fourier coefficients g,_,. Only in the ab-
sence of bunching will the normal modes of Sect. 2 coincide with the actual
normal modes of the resistive-wall force.

5. — The one-beam instahility for an unbunched beam.

In this case there is no mixing of the normal modes and eq. (4.12) gives
because of (2.5)

(5.1) (— 9+ 1)) Y, = Ny P(v + s00) ¥, .
This equation has solutions, only provided that »*=+?, where :
(5.2) ¥: = 9] — Ny P(v 4 sw,)

We first discuss the long-wave limit, i.e. the case of wavelengths which can
be reagonably eXpectedr to be registered by a pick-up electrode capable of
transmitting siglials down to the cm range. An inspection of (4.3) then shows
that the first term in the bracket can be neglected because of the factor
1—wo*=1/y2 For la <1, 0H[dy can be approximated by ¢/ma. The penul-
timate term is negligible in comparison with the second (leading) term as long
a8 va <1 (which is the case in all practical applications). In the last term
of (4.3) we can put M =1. It iz then seen that also the last term can be
neglected unless o is in a small band of width »(va)® in the neighbourhood of
»/2. This can only happen if ¢ is near a semi-integral value and we will not
consider this case.
Taking only the leading term in (4.3) eq. (5.2) can now be replaced by

Nrgve

(5.3) Vs =7 Zo(1 +i)(q + 572 .

2y 0l

In this eXpreSsion v is measured in cm/s, ¢ is the velocity of light, Z, is defined
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by (3.16) with w = wy; 7, =e*/mc? is the classical radius of the electron =
= 2.8-10~'% cm.

It is seen that it follows from eq. (5.3) that Im (»’)<<0 provided
g+s>0. For ¢+s <0 the square root has to be treated according to the
prescription givern in Sect. 8, 7.e. assuming a cut extending south from w = 0.
This gives (¢-+s)*=—i(— (¢+s))~%. We will therefore have Im (»3) > 0 pro-
vided ¢-+s<0. Remembering that the time dependence was assumed to
be e ** this means that we will have damping provided ¢-+4s>0 and
antidamping, 4.e. a resistive-wall ingtability for ¢-+s<< 0. This is the result
found by L.N.S.; it has been brillantly confirmed bu the MURA experiment.

The rise time in the case of instability is defined as 1/, =2 Im () /po— 0
(where p is the damping constant of the betatron oscillations). The factor 2
is due to the fact that ¢, is conventionally defined as the rise time of energy
and not of amplitude. This gives because of (5.3) (neglecting p)

mad
" Nr,Re

(5.4) t Z7tqV—(q + 1) for r<—gq.

This is exactly the result which L.N.S. obtained for the case of circular sym-
metry.

The derivation of 1..N.S. was based on the quasi-static approximation, which
requires that the instability propagates via waves with |w| < |k|. In the pres-
ent case this would mean |g+s| <s. In the application to the MURA ex-
periment this condition is valid only for s=—3 (since ¢=2.8). It was
realized by L.N.S. by means of a control of the self-consistency of their solu-
tions, that their result was more general than what the limitations imposed
by the use of the quasi-static approximation would lead one to expect.

The present derivation is not restricted to the quasi-static approach. In-
deed it can be shown that with the exception of the case ¢ =3+n (n=0,
1, 2, ...) the results of LL.N.S. are valid for normal modes which satisfy

(5.5) 7| < gl(va)? .

For the MURA experiment the right-hand side of this inequality has the
value 2200. _

The question naturally arises whether any significance can be attached to
eq. (5.1) for frequencies which do not satisfy (5.5). It is even doubtful if all
the normal modes which respect this inequality can indeed be excited. The
question assumes a particular urgency if one considers that an inspection of
(4.3) shows that there is another region of instability for frequencies > w,.
This ingtability is due to the forward wave and is associated to lifetimes of
the order t;~ t (vay)~®. If this instability were real it would eliminate all hope
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of a cure by means of a feedback system. The considerations of Sect. 2 show,
"however, that the mixing time of the normal modes is of the order of ns for
most of the projected machines and for w of the order w,. The «infra-red »
instabilities could only occur if ¢ < T, . This is far from being the case for
all practical applications.

In view of this we shall use in the following a simplified form of P(w),

namely

(5.6) | w P(w,) = (1+ i) A(g + 5)7
with
(5.7) A = 7"00020/2na3y (872) .

This will be an adequate approximation to (4.3) as long as the condition (5.5)
is satisfied. The application of (5.6) will of course limit us to the treatment
of phenomena which can be revealed by a r.f. pick-up electrode.

6. — Extremely bunched beams.

In this Section we consider the resistive-wall effect in the case of a single
beam of N particles distributed in B equidistant bunches with N/B particles
in each. The bunches have position &, defined in (2.9). If the length of the
bunches is very small as compared to the wavelength considered (and this is
what we mean by an extremely bunched beam) we can treat all the particles
of a bunch as a single oscillator of charge eN/B. Equation (4.11) can then be

written in the form

- (6.1) B(—v* 4+ 2, = > Nw, Py + sw,) exp [— 2zi(n — k)s[B]n. .

M58

For a first orientation we consider the case B=1. The secular equation
then gives

(6.2) v = 92 — Nw, > P(» + sw,) .

The sum on the right-hand side of this equation does not converge and a cut-off
has to be applied at short wave lengths. However the imaginary part of the
right-hand side converges and gives in the approximation (5.6)

(6.3) Im (»*) = — ANT(q)
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with

(6.4) Tig)= > 8+ 97— > s—a)~

§>—q s$>a

The following properties of the function 7'(q) are easily verified. 1'(q) is periodic:
T(g+1)=T(q). It is therefore sufficient to define 7'(s) in the interval 0 <
< g<1. It is also obvious that one must have Ti1—¢q)=—7T(g). (The pe-
riodicity allows one to extend the definition to negative values of ¢ and the
substitution ¢, — g exchanges the roles of the two sums in the definition (6.4).)
It follows that

(6.5) T(E) =0
and it is easﬂy seen that 7> 0 for 0 < ¢< 4 and that it is < 0 for $ < ¢<1.

It behaves as (q—n)~* in the limit ¢—n — +&. Its values are given in the
Table:

0.45 | 0.50 0.55

i I
q iO.OO 0.05 | 0.10 | 0.156 | 0.20 0.25|0.3010.35 0.40

i
1.03 1 0.75 | 0.51 | 0.25 | 0.00 | —0.25

T(q)| oo | 435|290 | 2.19 | 172 | 1.34

It follows from eq. (6.3) that there will be damping if 7> 0 and that
there will be antidamping if << 0. In the case of one bunch we shall there-
fore have instability if

(6.6) | n+i<g<mn+1 for n=20,1,2, ...

This rule has been first discovered by CoURANT. It 'is in agreement with the
instability observed at Stanford: the rings were operated with q ~~ 0.9.

Equations (6.3) and (6.4) allow one to calculate the rise time #, for the
unstable mode

madyZs*

(6.7) =N R

g T(q)~* : for T<O0.
Comparing this result to (5.4) it will be noted that the rise times for a bunched
beam are of the same order as those for an unbunched beam.

Returning to the general case of several bunches we introduce the maero-
scopic normal modes defined by eq. (2.11). Equation (6.1) is thus transformed
into

(6.8) (— »* —l— v\ H, = Nw, > P(v + swo) H, G, .
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Using eq. (2.10) and remembering that from (2.11) it follows that H,  ,= H,
we find that the macroscopic modes H, are adapted to the perturbation and
that one has

(6.9) T Im (v;) = — NAT(q)

where T?(q) is defined by the equation
r q

e

(6.10) @)= S Butrtgi— 3 Bn—r—q .

Bntor>—4 Bp—r>0

Comparing this with the definition (6.4) of T'(q) it can at once be Veriﬁéd that
(6.11) T%(q) = T((g + r)/B)B~*.

To every normal mode there corresponds a reduced g¢: ¢'= (g+7)/B. We
can therefore apply the same argument as in the case of a single bunch. A
mode will be stable, if (mod (1)) the reduced ¢ falls between 0 and %, and it
will be unstable if ¢’ is between 1 and 1 (mod (1)). As an example we con-
sider the case of Adone, with ¢=3.2 and B=23. We have ¢,= 0.067, 0.40,
+0.73 (for r= 0, 1, 2 respectively). It follows that only the mode 7 =2 18
unstable. ' .

The stability rule for several bunches has recently and for the first time
been derived by COURANT and SESSLER (%).

If the system is unstable in the s-th mode it can be easily seen that a small
pick-up electrode will respond to all the frequencies wq-|(g+4 s+ B,)| with
n=0, +1, +2,... It follows that an instability of the type considered in
this Section can be cured by applying a feedback on any one of these fre-
quencies.

7. — The resistive-wall effect in the presence of two beams.

Tt follows from egs. (4.2) and (4.3) that in the presence of two beams trav-
elling in identical orbits the mechanical equations will be given by
(7.1) () — ") = ... + > P(w,) exp [is(E¥ — &) /R — 24w, — ] .
Here the indices (1) and (2) differentiate the electron beam (1) from the po-
sitron beam (2) and the dots... indicate the interaction of the positron beam

with itself. The equation for the electron beam is obtained by exchanging the
indices (1) and (2). P is defined by the lower sign in (4.3).

5146



THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 271

For a first orientation we shall neglect the self-interaction of the beams
indicated by the dots and merely try to decide whether the interaction between
two beams is at all capable of leading to a build-up of betatron oscillations.
That this interaction is capable of leading to an instability by changing the
optical properties- of the. machine has first been discussed by AmmaAnN and
RITSON (10:11.7) ywhoge results have been improved and refined by many others.

The mechanical problem posed by the «mutilated » equation (7.1) is dif-
ferent from what has been dealt with so far: the time dependence does not
cancel on the right-hand side of (7.1). In addition to a possible antidamping
the resistive-wall force therefore « deharmonizes » the betatron oscillations. We
are not interested in the latter part of this effect though it should be pointed
out that it might lead to complications, whenever the betatron oscillations are
strongly anharmonic from the start.

In order to see whether there can be dedamping as a consequence of the
interaction between two beams we therefore consider first the simplified model
without self-interaction. Then the only term, which will give a contribution
to the effect is the one with s = 0. This term acts only on the centre of mass
of the two beams. Putting

(7.2) Ny Zn‘“ and  Nyp® = > n?
) k

and using the approximation (5.6) for f’(co) (an inspection of eq. (4.3) shows
that this is a good approximation also in the present case provided va<(1),
we get, neglecting the self-interaction,

. | 03— = AN+ i),
. l '(vi_,’/;)n(l) AN, q (1 L ) (2)‘

The secular equation has the solutions

(7.4) Vi =% & (14 )4 VNN, /g
and the adapted normal modes are
(7.5) H, =VNn®LVNne.

(1% F. AmMmaAN and D. RitsoN: Proceedings of the International Conference on High-
Energy Accelerators (Brookhaven, 1961), p. 262.
(1Y) M. BasserTi: Calcoli numerici sugli effetti di carica spaziale in un anello di

accumulazione per elettroni e positront, in Labomtom Nazionali di Froscati, LNF-62/35
(1962).
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Equation (7.4) cannot be taken literally, since we have only taken account
of the resistive-wall force. This is quite legitimate for the imaginary part of
f?(a)), but not for the real part to which a large contribution may acrue from
the direct interaction between the two beams (AMMAN, RITSON) as well as from
the field reflected- by a perfectly conducting wall.

Taking only the imaginary part of eq. (7.4) we conclude that there is a
tendency for damping of the mode H_ and for antidamping for the mode H_.
For N,~N, H_ may be termed the mechanical or electrical centre, respectively,
of the two beams. The foregoing analysis therefore indicates that a dedamping
tendency exists for the electrical centre. ’ ’

Whether this tendency is actually converted into an instability depends on
the self-interactions of the beams as well as on the neglected real part of either
the self-interaction or the interaction between the two beams.

To see what can happen we consider the following more realistic model of
a secular equation:

(7.6) (v — ") = aN.n® + BNy

(4 an equation with the indices (1) and (2) interchanged). In view of (7.3)
and of (6.9) we assume

[ g =B+ ify=p+ idg?,

(7.7)
x = o + foy, = o, + 1ATE(q) -

Since the force between electron and positron is attractive and strong it ap-
pears quite possible that f, is very large and negative. The eigenfrequencies

of the secular equation (7.6) can be easily determined and one gets
(7.8) 200y —v*) = (N1 + N) & (23N, — No)*+ 482N, N,)

and it is obvious that the imaginary part of the frequency depends not only
on N, and N, but also on the real parts of o and g. '
A remarkable exception is represented by the case N, = N,= N, for which

(7.9) Im (v) = — AN(T5(9) £ ¢7%)

and this result is completely independent of the real parts of either « or B.
In this case no additional instability is created by the beam-beam interaction,
provided T%(g) > and ¢*< T¢(g). This result can be generalized to arbitrary
numbers N,, NV, if special assumptions are made about the coefficients o and B.

5148



¢

'THE TRANSVERSE RESISTIVE-WALL INSTABILITY ETC. 273

If it is assumed that |8, is much bigger than the moduli of all the other
coefficients (f8,, o, and o«,) we can suppress the term with « in the square root
in (7.8). In this case the imaginary part of the r.h.s. of (7.8) is ,exclusively‘
determined by the imaginary parts of o and f and (7.9) can be generalized
to give )

(7.10) Im (v2) = — A (3N, + Vo) T3 (g) + VNN,

which clearly goes into (7.9) for N, = N,= N. Since the geometrical mean

vV N.N, is always less than the arithmetical mean Z(N,-+X,) it follows that

for an arbitrary number of particles the resistive-wall interaction of two beams

does not introduce any new instabilities provided T7(¢)> 0 and g i< T2 (q).
This is essentially the result obtained by PELLEGRINI and SESSLER (°).

8. — Summary.

In the place of a proper summary, we show the conclusions which the pres-
ent work allows us to draw on the impact of the resistive-wall instability on
the behaviour of one or two beams in Adone. _

The essential design parameters of Adone are (*2): The circumference %
is 100 metres (K =1590 cm). -The q corresponding to the wvertical betatron
oscillations is assumed to be 3.2. We assume a «nominal value » of the con-
ductivity of the wall material to be 10% s, Since w,=1.88-107 §~* this giv-
es (compare (3.16)) Z,=8.65-10-5. This justifies the treatment of the re-
sistive-wall instability as a perturbation.

Equations (5.4), (6.7) and (7.9) suggest the introduction of a rate para-
meter g, (571) by means of

8.1 p_TnBz,
Tacyvyq

0o is a characteristic rate of all the phenomena connected with the resistive-
wall instability. For 2-10%! particles per beam (¢.e. a current of approximate-
ly 100 mA), a =4 cm, y =700 (Which corresponds to the phase of injection),
one gets g, = bl.4 s~ "

(12) F. AMMAN, et al.: Status report on the 1.5 GeV electron positron storage ring Adone-
in Proceedings of the International Conference on High-Emnergy Accelerators (Dubna, 1963),
p. 249; Adone, The Frascati 1.5 GeV electron positron storage ring, in Laboratori Nazio-
nali di Frascati, LNF-65/26 (1965); paper presented at the Frascati Interndtional Con-
ference on High-Energy Accelerators, September (1965).
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The results for a single beam can be summarized by stating that if the
beam is split into B bunches of N/B particles each, there will be B normal
modes characterized by the mode index 0<s< B—1. By means of

(8.2) ) o' = 017 (q)

with T%(q) defined in eq. (6.10) a rate is attributed to every mode s. Positive
rates correspond to damped modes, negative rates to dedamped modes. Damp-
ing or build-up is decided by Courant’s rule. We have damping if (qg-+s)/B
falls between 0 and % (modulo 1) and dedamping otherwise.

The values of the function 7%(q) can be determined by means of (6.11)
from the table for T(q) = T%(g). For Adone one thus finds the values T, ,=
= 2.08, 0.29, 0.7. The corresponding rates are

(8.3) o™ =108, 15, —36 (37) .

In accordance with Courant’s rule it follows that only the mode s=2 is de-
damped with a rise rate of 36 s~*. The other two modes are damped with the
damping constants defined in (8.3).

The two-beam situation can be summarized thus. The resistive-wall effect
only acts in the centre of charge of either beam (i.e. on the modes s=0).
Two new modes H, can be derived from the centre of charge co-ordinates of
the two beams. If the beams are of equal strength N, =N,= N we can de-
fine the rates o* corresponding to the two modes H, by means of

(8.4) | 0= = 0o(T%(q) = ¢7F)

(compare eq. (7 .9)). The upper sign corresponds to the centre of mass, the

-lower to the centre of charge of the two beams. In the case of Adone we have
gi:136, 78 51, respectively: the centre of mass is more strongly damped
than the centre of charge. '

A possible mode of operation of Adone is to fill only one of the three bunches
of either beam. In this case there would be no one beam instability. To cover
this case T (q) in (8.2) and (8.4) have to be substituted by 7(¢). The simple
beam then results stable with a damping constant of 88.5 s~ The damping
constant for the mechanical and electrical modes of the two beams are respec-
tively 117 and 59.6 s

Tt should be clear from the long list of simplifications given in the Intro-
duction, that the numerical values for the various rates should be taken with
a grain of salt.
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RIASSUNTO

Si discute l'instabilithy trasversale causata da pareti resistive, dando speciale rilievo
~alle difficolth che essa pud causare nell’eseguire esperimenti con fasei incrociati. Vengono
confermati i risultati ottenuti precedentemente da Laslett, Neil e Sessler (4), cosl come
da Courant e Sessler (?) e Pellegrini e Sessler (8). Il trattamento si basa su una geome-
tria semplificata in cui il moto dei faseci e rettilineo. L’applicazione alla geometria circo-
lare & resa possibile dall’introduzione di condizioni di periodicita. I risultati ottenuti
sono validi sia per fasci continui sia per fasci suddivisi in pacchetti di particelle. Si
discute anche la forza dovuta alla parete resistiva nel caso dei due fasci inerociati.
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